Endurance training increases stimulation of uncoupling of skeletal muscle mitochondria in humans by non-esterified fatty acids: an uncoupling-protein-mediated effect?

نویسندگان

  • M Tonkonogi
  • A Krook
  • B Walsh
  • K Sahlin
چکیده

Uncoupled respiration (UCR) is an essential property of muscle mitochondria and has several functions in the cell. We hypothesized that endurance training may alter the magnitude and properties of UCR in human muscle. Isolated mitochondria from muscle biopsies taken before and after 6 weeks of endurance exercise training (n=8) were analysed for UCR. To investigate the role of uncoupling protein 2 (UCP2) and UCP3 in UCR, the sensitivity of UCR to UCP-regulating ligands (non-esterified fatty acids and purine nucleotides) and UCP2 and UCP3 mRNA expression in muscle were examined. Oleate increased the mitochondrial oxygen consumption rate, an effect that was not attenuated by GDP and/or cyclosporin A. The effect of oleate was significantly greater after compared with before training. Training had no effect on UCP2 or UCP3 mRNA levels, but after training the relative increase in respiration rate induced by oleate was positively correlated with the UCP2 mRNA level. In conclusion, we show that the sensitivity of UCR to non-esterified fatty acids is up-regulated by endurance training. This suggests that endurance training causes intrinsic changes in mitochondrial function, which may enhance the potential for regulation of aerobic energy production, prevent excess free radical generation and contribute to a higher basal metabolic rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Low Volume High Intensity Interval Training on Sarcolemmal Content of Fatty Acid Transport Proteins (FAT/CD36 and FABPpm) in Young Men

High-intensity interval training (HIT) induces skeletal muscle metabolic and performance adaptations that resemble traditional endurance training despite a low total exercise volume. On the other hand, fatty acid oxidation is increases in skeletal muscle with endurance training. This process is regulated in several sites, including the transport of fatty acids across the plasma membrane. The...

متن کامل

Alterations in proton leak, oxidative status and uncoupling protein 3 content in skeletal muscle subsarcolemmal and intermyofibrillar mitochondria in old rats

BACKGROUND We considered of interest to evaluate how aging affects mitochondrial function in skeletal muscle. METHODS We measured mitochondrial oxidative capacity and proton leak, together with lipid oxidative damage, superoxide dismutase specific activity and uncoupling protein 3 content, in subsarcolemmal and intermyofibrillar mitochondria from adult (six months) and old (two years) rats. B...

متن کامل

Decreased Uncoupling Protein 2 and 3 (UCP2 and UCP3) mRNA expression by endurance exercise training with and without chronic administration of nandrolone in rat heart

Introduction: The effect of regular exercise in decreasing the incidence of heart diseases is well known. The abuse of anabolic androgenic steroids (AAS) has been associated with cardiovascular disorders. Uncoupling proteins (UCPs) transport protons across the inner mitochondrial membrane thereby proton gradient can be diminished by the action of UCPs. This process will result in the uncoupl...

متن کامل

A comparative study of the inhibitory effects of purine nucleotides and carboxyatractylate on the uncoupling protein-3 and adenine nucleotide translocase.

Uncoupling proteins (UCPs) mediate fatty acid-induced proton cycling in mitochondria, which is stimulated by superoxide and inhibited by GDP. Fatty acid anions can also be transported by adenine nucleotide translocase (ANT), thus resulting in the uncoupling of oxidative phosphorylation. In the present work, an attempt was made to distinguish between the protonophoric activity of UCP3 and that o...

متن کامل

Skeletal muscle uncoupling-induced longevity in mice is linked to increased substrate metabolism and induction of the endogenous antioxidant defense system.

Ectopic expression of uncoupling protein 1 (UCP1) in skeletal muscle (SM) mitochondria increases lifespan considerably in high-fat diet-fed UCP1 Tg mice compared with wild types (WT). To clarify the underlying mechanisms, we investigated substrate metabolism as well as oxidative stress damage and antioxidant defense in SM of low-fat- and high-fat-fed mice. Tg mice showed an increased protein ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 351 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2000